The RNA polymerase I transcription factor, upstream binding factor, interacts directly with the TATA box-binding protein.
نویسندگان
چکیده
The accurate transcription of human rRNA genes by RNA polymerase I requires two transcription factors, upstream binding factor (UBF) and promoter selectivity factor (SL1). Human SL1 (hSL1) is a multisubunit complex, one of whose components is TATA box-binding protein (TBP). hSL1 binds to the core region of the rRNA promoter, but does so inefficiently in the absence of human UBF (hUBF). hUBF interacts with the upstream control element of the rRNA promoter and facilitates binding of hSL1. The molecular basis by which hUBF increases binding of hSL1 remains to be elucidated. In this report, we use an immobilized protein binding assay to identify and purify a 95-kDa TBP-binding polypeptide. Microsequence analysis reveals that the 95-kDa TBP-binding protein is hUBF. We show that hUBF is stably associated with TBP and is present in large TBP-containing complexes. Our results indicate that the cooperative binding of hUBF and hSL1 on the rRNA promoter is mediated by direct interaction between hUBF and TBP. We also provide evidence that hUBF associates with TFIID, a TBP-containing RNA polymerase II transcription factor.
منابع مشابه
TATA binding protein can stimulate core-directed transcription by yeast RNA polymerase I.
The TATA binding protein (TBP) interacts with two transcription factor complexes, upstream activating factor (UAF) and core factor (CF), to direct transcription by RNA polymerase I (polI) in the yeast Saccharomyces cerevisiae. Previous work indicates that one function of TBP is to serve as a bridge, enabling UAF to recruit and stabilize the binding of CF (23, 24). In this work we show that, in ...
متن کاملSites of RNA polymerase III transcription initiation and Ty3 integration at the U6 gene are positioned by the TATA box.
The function of a TATA element in RNA polymerase (EC 2.7.7.6) III transcription of a naturally TATA-containing U6 snRNA gene and a naturally TATA-less tRNA gene was probed by transcription and Ty3 transposition analyses. Deletion of the TATA box from a U6 minigene did not abolish transcription and Ty3 integration but changed the positions of initiation and insertion. Insertion of the U6 TATA bo...
متن کاملPhosphorylation of the rRNA transcription factor upstream binding factor promotes its association with TATA binding protein.
rRNA synthesis by RNA polymerase I requires both the promoter selectivity factor 1, which is composed of TATA binding protein (TBP) and three TBP-associated factors, and the activator upstream binding factor (UBF). Whereas there is strong evidence implicating a role for phosphorylation of UBF in the control of growth-induced increases in rRNA transcription, the mechanism of this effect is not k...
متن کاملA role for the TATA-box-binding protein component of the transcription factor IID complex as a general RNA polymerase III transcription factor.
The major class of vertebrate genes transcribed by RNA polymerase (EC 2.7.7.6) III, which includes 5S rRNA genes, tRNA genes, and the adenovirus VA genes, is characterized by split internal promoters and no absolute dependence upon specific upstream sequences. Fractionation experiments have shown that transcription of such genes requires two general RNA polymerase III-specific factors, TFIIIB a...
متن کاملArchitecture of protein and DNA contacts within the TFIIIB-DNA complex.
The RNA polymerase III factor TFIIIB forms a stable complex with DNA and can promote multiple rounds of initiation by polymerase. TFIIIB is composed of three subunits, the TATA binding protein (TBP), TFIIB-related factor (BRF), and B". Chemical footprinting, as well as mutagenesis of TBP, BRF, and promoter DNA, was used to probe the architecture of TFIIIB subunits bound to DNA. BRF bound to TBP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 269 48 شماره
صفحات -
تاریخ انتشار 1994